“Papers of School of Cognitive Sciences”

 

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

  81. M. Fattahi, K. Eskandari, E. Riahi, R. Khosrowabadi and A. Haghparast,
Distinct suppressing effects of deep brain stimulation in the orbitofrontal cortex on the development, extinction, and reinstatement of methamphetamine-seeking behaviors,
Life Sciences 322(2023),   [abstract]

DOI: https://doi.org/10.1016/j.lfs.2023.121613

   82. K. Eskandari, M. Fattahi, E. Riahi, R. Khosrowabadi and A. Haghparast,
A wide range of Deep Brain Stimulation of the nucleus accumbens shell time independently reduces the extinction period and prevents the reinstatement of methamphetamine-seeking behavior in rats,
ScienceDirect 319(2023),   [abstract]
DOI: https://doi.org/10.1016/j.lfs.2023.121503

   83. E. Ebrahimadeh, F. Fayaz, L. Rajabion, M. Seraji, F. Aflaki, A. Hammoud, Z. Taghizadeh, M. Asgarinejad and H. Soltanian-zadeh,
Machine learning approaches and non-linear processing of extracted components in frontal region to predict rTMS treatment response in major depressive disorder,
Frontiers in Systems Neuroscience 17(2023),   [abstract]
DOI: https://doi.org/10.3389/fnsys.2023.919977

   84. S. Rashid Shomali, S. Rasuli, M. Nili Ahmadabadi and H. Shimazaki,
Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons,
Communications Biology 6(2023),   [abstract]
DOI: https://doi.org/10.1038/s42003-023-04511-z

   85. R. Dezfouli, S. Mazaheri, Z. Mousavi and A. Haghparast,
Restraint stress induced the antinociceptive responses via the dopamine receptors within the hippocampal CA1 area in animal model of persistent inflammatory pain,
Behav Brain Res (2023), 443  [abstract]
DOI: https://doi.org/10.1016/j.bbr.2023.114307

   86. F. Nazari-Serenjeh, R. Azizbeigi, M. Rashvand, S. Mesgar, H. Amirteymori and A. Haghparast,
Distinct roles for orexin-1 and orexin-2 receptors in the dentate gyrus of the hippocampus in the methamphetamine-seeking behavior in the rats,
Life Sciences 312(2023),   [abstract]
DOI: https://doi.org/10.1016/j.lfs.2022.121262

   87. H. Amirteymori, S. Karimi-Haghighi, M. Mirmohammadi, M. Majidinezhad, E. Khosrowabadi and A. Haghparast,
Hypocretin/orexin system in the nucleus accumbens as a promising player in the extinction and reinstatement of methamphetamine-induced CPP,
ScienceDirect 120(2023),   [abstract]
DOI: https://doi.org/10.1016/j.pnpbp.2022.110616

   88. R. Sarailoo, K. Latifzadeh, S. Amiri, A. Bosaghzadeh and R. Ebrahimpour,
Assessment of instantaneous cognitive load imposed by educational multimedia using electroencephalography signals,
Frontiers in Neuroscience 16(2022),   [abstract]
DOI: https://doi.org/10.3389/fnins.2022.744737

   89. E. Alaee, N. Pachenari, F. Khani, S. Semnanian, A. Shojaei and H. Azizi,
Enhancement of neuronal excitability in the medial prefrontal cortex following prenatal morphine exposure,
Brain Research 204(2022),   [abstract]
DOI: https://doi.org/10.1016/j.brainresbull.2023.110803

   90. A. Narmashiri, J. Hatami, R. Khosrowabadi and A. Sohrabi,
Resting-State Electroencephalogram (EEG) Coherence Over Frontal Regions in Paranormal Beliefs,
Basic and Clinical Neuroscience 13(2022),   [abstract]
DOI: https://doi.org/10.32598/bcn.2021.923.2

   back to top  

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

scroll left or right